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CALCULATION OF NONSTATIONARY MIXED CONVECTION OF BINARY GAS 

MIXTURES IN THE PRESENCE OF LARGE DENSITY VARIATIONS 

D. A. Nikulin and M. Kh. Strelets UDC 532.516.5:529.2 

Nonstationary mixed-convective flows of gas and gas mixtures are extremely widespread 
in nature and technology. Their study is necessary, for example, for developing safe methods 
for handling toxic and explosive mixtures, solving a number of ecological problems, and in- 
dustrial hygiene. In spite of the considerably subsonic nature of such flows, the spatial-- 
temporal variation of the density in the flow, due to the nonisothermality or difference in 
the molecular weights of the components of the mixture, can in many cases be very significant. 
Nevertheless, until recently, the theoretical analysis of mixed-convective flows, just as the 
solution of the problems of natural convection, was based primarily on the use of the so- 
called Boussinesq approximation [I], which is based on the assumption that the density vari- 
ations in the flow are small. In [2, 3] a system of equations is formulated, which, in con- 
trast to the Boussinesq approximation, can be used to describe the convection of binary gas 
mixtures in the presence of arbitrary finite variations of the density, which greatly ex- 
panded the possibilities of numerical modeling of such flows. 

In this paper, the approach adopted in [2, 3] is generalized to the case of mixed-con- 
vective flows. 

The basic difference between the derivation, proposed below, of the approximate system 
of equations of mixed convection and the analogous derivation of the system of equations of 
natural convection, described in [2, 3], lies in the choice of scales used to put the com- 
plete system of Navier--Stokes equations, on which the analysis is based, into dimensionless 
form. This difference is due to the appearance of an additional dimensional parameter -- the 
characteristic velocity of forced convection -- in problems of mixed convection. To illustrate 
the choice of scales, we shall examine the following problem. Let a region, with the shape 
of a rectangular parallelepiped, be filled with gas with molecular weight m2 at a tempera- 
ture T2. Initially, another gas, whose molecular weight is ml and whose temperature is TI 
(for definiteness T2 > Tl, m2 > ml), begins to enter the volume with velocity vl through the 
opening ef (Fig. I). Simultaneously, the same gas that filled the volume initially is in- 
troduced into the region with velocity v2 through the opening ab. The mixture formed flows 
out of the volume through the opening cd. The problem is to calculate the development of the 
velocity, concentration, and temperature fields of the mixture in the volume as a function of 
time. 

The problem described above is, on the one hand, quite typical for the class of flows 
under examination and, on the other, it is of certain practical interest, because it models 
the situation arising with activation of emergency forced exhaust ventilation when a foreign 
gas begins to enter an enclosure. 

To put the system of Navier--Stokes equations, which describes the flow under study, into 
dimensionless form, we shall select as scales the following characteristic parameters of the 
problem: the average geometric value of the characteristic velocities of forced and natural 
convection v0 = ~v2(gL2~1)i/2 as the velocity scale [here el = (m2/ml -- I)(T2/TI -- I) in the 
case of nonisothermal flow of the gas mixture, El = gT = T2/TI -- I in the case ofnonisothermal 
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flow of a homogeneous gas, and El = c M = m2/ml -- I in the case of an isothermal flow of the 
mixture], to = L2/v0 for the time scale, To = T2 for the temperature scale, m0 = m2 for the 
molecular weight scale, p0 = p0m0/RT0"for the density scale (p0 is the pressure at the bottom 
of the region at t = 0), P0 = p2(T0) for the scale of the coefficient of dynamic viscosity, 
Do = DI,2(T0, p0) for the scale of the diffusion coefficient, %0 = %2(T0) for the scale of 
the coefficient of thermal conductivity, and Cp0 = Cp2(T0) for the scale of the specific heat 
capacity at constant pressure. 

Further, as done in [2, 3], we shall introduce together with the pressure p' the excess 

pressure p+, defined by the relation p+ = p --P0oxP -- x and we shall choose as the 

scale for this pressure the magnitude of the dynamic head p0v~. 

Transforming the system of Navier--Stokes equations, which includes the Navier--Stokes 
equation of motion, the equation of continuity for the mixture, the equation of balance of 
the mass of one of the components of the mixture neglecting thermo- and barodiffusion, the 
equation of energy balance neglecting diffusion thermoeffect and the equation of state for 
the mixture of perfect gases, into a dimensionless form using the scales introduced above, 
we obtain 

Here 

dv p -- exp (-- ~%) t 
P - - ~  = - -  V P +  81_V~_ ~ j -t- V~Arl/2Re O; ( 1 ) 

ap 
o'7 + V (or) = O; (2) 

dc t 
V (pDVC); (3) 

P -~" S C V Arl/2Re 

dr (k -- t) M ]/~le  Ndis (k - -  l) dp V 0~VT) 

~ - ~ - =  V ~ ( ~ + ~ ) ~  + V~-(7~+~) d, + P~VAr'~R~ 
( ~ - -  %,) 

+ p D V C V T ;  
so 1 / ~  

p+ M ]/k-~ei + exp ( - -  ex2) ---- pT (e,~ + 1) (e~C + t) = p.  

2 �9 = 2 div (~tS) - -  -~ V (~v), /~is = 2~t~ ~ _ -$2 9 (Vv)", 

(4) 

(5) 

~2r3~8 u 2 mogL 2 Re = P~ Fr = v~ Sc ~o Ar = eo~2~ 1 Pr  = %o~o M , RT ~ 
I~0 ' ge lL2'  = PO D---~' P~ ' %0 ' = ~ 8~-- �9 

We shall examine a flow in which the Mach number M is much less than I. Taking into 
account the fact that in most problems of practical significance the parameter of hydro- 
static compressibility also assumes small values, it may be presumed that in order to de- 
scribe such flows it is expedient to use the limiting form of the system of equations (~)- 
(5) with M and ~ approaching zero. Passing to the limit indicated and transforming the equa- 
tion of continuity (2) using (3)-(5), as done in [2], we obtain 

dv (0-- t) j 1 1 . 
p ~  = --  Vp+ q ~ + ]fAr'/~R~ @; (6) 

gM 
V {ZVT) + (cv~ --  Cp:) D VCV T + . _ _  V (9DVC); (7)  

dC i 
P a T =  Sc V ~  V(oDVC); (8)  

( ,~ - ~ )  
dT _--, i V 0~VT) + p D V C V T ;  (9) 

pc~}- Pr V ~  Sc FArI~Re 

(e~C + 1) (e~ + t) pT = I. ( 1 o) 

From the mathematical point of view the system of equations (6)-(10) is analogous to 
the system of equations in the Boussinesq approximation. Indeed, just as the equation of in 
incompressibility Vv = O, which enters into the system of equations in the Boussinesq approx- 
imation, Eq. (7) is a nonevolutionary equation (it does not include time derivatives of the 
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function sought). This is extremely important, because, as a result, efficient numerical 
methods, developed for integrating the system of equations in the Boussinesq approximation 
written in natural variables, can now be used to solve the system of equations (6)-(10) and 
it is thereby possible to avoid the difficulties arising when integrating the system of equa- 
tions (I)-(5) in the case of considerably subsonic flows [4]. As an illustration of this, we 
shall examine the results of the solution of the problem described above based on the system 
of equations (6)-(10). We shall restrict our attention to the particular case of an iso- 
thermal flow of a mixture (TI = T2). In this case, the system of equations (6)-(10) greatly 
simplifies and assumes the form 

d v  (p - -  1) i 

8 M 
Vv = _ _  V (pVC); (12) 

so 

dC t V (oVC); (13)  
PTf = sc V Arl/2R-------o 

p ( e ~ c  + I) = I .  (i 4) 

The initial conditions for this system of equations for the problem under study are 
written as follows: 

v ~ O ,  C = 0  ~ t = 0 .  ( 1 5 )  

As b o u n d a r y  c o n d i t i o n s  a t  t h e  s o l i d  w a l l s ,  we u s e  t h e  c o n d i t i o n s  of  a t t a c h m e n t  f o r  
v e l o c i t y  and  t h e  c o n d i t i o n s  t h a t  t h e  p r o j e c t i o n  of  t h e  d i f f u s i o n  f l u x  v e c t o r  a l o n g  t h e  n o r -  
mal  t o  t h e  w a l l  v a n i s h e s :  

v m = O, (SC /an )w  = O. (16)  

Uniform profiles of the normal and zero values of the tangential components of the ve- 
locity vector are given on the segments ab and ef, and the concentration of the light gas is 
assumed to equal zero and one, respectively. 

"Soft" boundary conditions are used on the segment cd: 

av /ax~  = ~c/~x  1 = o.  ( 1 7) 

The numerical integration of the system of equations (]I)-(14) with the initial and 
boundary conditions (15), (17) was performed based on the use of one of the modifications 
of Harlow's SMAC method [5] on a uniform finite-difference grid with dimensions 22 • 22. 
Calculations on smaller grids (32 • 32, 22 • 42) showed that in this case the flows arising 
in the entire examined range of variation of the determining criteria of the problem are de- 
scribed with quite high accuracy. As far as the step in the integration over time is con- 
cerned, it is determined by the Courant condition uAt/Ax < I for an incompressible liquid. 
Thus, using the system of equations (11)-(14), there is no need in the unjustified, from 
the point of view of the accuracy of the calculation, decrease of the time step in accor- 
dance with Courant's condition for an incompressible gas (u + a)At/Ax < I (~ is the velocity 
of sound), which essentially eliminates the possibility of calculating the flow under ex- 
amination based on the complete system of Navier--Stokes equations with the help of explicit 
schemes and requires the development of special very cumbersome implicit algorithms (see, 
for example, [6, 7]). 

Let us examine the basic results of the calculations. First of all, the numerical para- 
metric investigation performed (the values of the determining parameters, for which the cal- 
culations were performed, are presented in Table I) showed that depending on the values of 
the determining parameters of the problem, two fundamentally different types of flows arise 
in the region. The first type is characterized by an asymptotic approach of all character- 
istics of the flow to some constant values in the limit t § ~. The second type, which is 
realized in a comparatively narrow range of variation of the determining criteria, is char- 
acterized by a nonmonotonic change in the parameters of the flow as a function of time and 
establishment of a quasistationary self-oscillatory flow regime in the limit t § ~. A graphic 
illustration of this is given in Fig. 2, which shows the dependence of the relative mass con- 

"P time for different values of tent of the light gas in the volume G = pCdxldxJ dxldx 2 on 

determining parameters of the problem (the numbers on the curves correspond to the variants 
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in Table I). The possibility of the appearance of self-oscillatory flow regimes in the prob- 
lem under examination was first mentioned in [8]. We shall examine in greater detail the 
mechanism of this phenomenon. With a defiuite ratio of the intensities of the diffusion 
transport of mass and momentum, as we! 1 as natural and forced convection, characterized by 
the values of the parameters /ArZ/2Re, Sc, Fr, Vl,2 = vz/v2, gz, at the initial stage of the 
process, the light gas accumulates in the lower part of the volume ABCD (ascending sections 
on curves 11, 12, in Fig. 2) as a result of the screening action of the stream of heavy gas 
entering through the opening ab. After this mass reaches some "critical" value, the buoyancy 
force displaces the "bubble" of light gas into the upper part of theregion. In so doing, 
the bubble is intensively carried out of the volume through the outlet opening cd (descending 
sections on the curves in Fig. 2). The screening horizontal stream of heavy gas is then 
again reformed and the entire process described is repeated from the beginning. In this 
case, a quasi-stationary self-oscillatory flow regime is established with time. Its char- 
acteristic phases are shown in Fig. 3, where the fields of the velocity vector and isolines 
of the concentration of light gas at times t = 62 and 67 are illustrated for conditions cor- 
responding to the regime N = 11 in Table I. 

Together with the values of the criteria ~r~72Re, Fr, Vl,2, sz, which, as is evident 
from Fig. 2, determine the flow regime arising in the volume ABCD, it also depends on the 
initial conditions. Thus, if at t = 0 the light, and not the heavy, gas fills the region, 
the self-oscillatory flow regime is not observed at all, which agrees completely with the 
mechanism of its development described above. 

The results of investigations of the flows of the first type, characterized as already 
mentioned, by the establishment of a stationary regime in the limit t § ~, are presented in 
Figs. 2, 4-6. The nature of the dependence of the asymptotic value of G(t) in the limit t§ 
on the values of the parameter vi,2 is somewhat unexpected. As is evident from a compari- 

TABLE 1 

N vi, 2 ~ F r  Sc N v l ,  2 e~ F r  Sc 

300 
100 
20 

300 
300 
300 
300 
300 

1 t 
t 1 
t t 
1 0,2 
1 t i0,01 

0,75 
1,5 

0,25 
0,25 
0,25 
0,25 

,25 

l 
t 

t i l *  
i t 2 '  
l 13 
i t4 
I t5 
i t6 

300 0,7 
300 0,0i 
300 0,3 
300 0,3 
o00 0,3 
300 0,3 
t00 0,3 
20 0,3 

0,25 
0,25 

i 0,25 
0,25 o,1 
0,0625 

t0 0,75 
l 0,25 
i 0,25 

I 
i 
1 
i 
i 
i 
I 
I 

* -- Self-oscillatory regime. 
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son of the dashed curves in Fig. 2, the indicated dependence is nonmonotonic. This 
means that under certain conditions the efficiency of ventilation of the volume ABCD, char- 
acterized by the quantity G(t), drops with increasing velocity of inflow of the ventilating 
gas. This can be explained based on the analysis of local characteristics of the flow, which 
exist under conditions corresponding to the variants N = 7 and 8 of the calculation. It is 
evident from Fig. 4a that in the first case the light gas cannot overcome the screening ac- 
tion of the stream of heavy gas, as a result of which it becomes concentrated primarily in 
the bottom of the region. In the second case, the heavy gas stream breaks up and a hydro- 
dynamic situation is established such that the light mixture penetrates freely toward the 
"outlet" opening cd and leaves the volume (Fig. 4b). This explains the increase in the 
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ventilation efficiency. However, this situation occurs only in a comparatively narrow range 
of variation of the parameter vi,2. For values of this parameter exceeding these li~nits, the 
dependence of G(t) on vi,2 has the opposite character (see Fig. 2); as vl,2 increases, Git_~o 
increases. This is explained by the fact that the change in the hydrodynamic environment, 
described above, leading first to an increase in ventilation efficiency with increasing vi,2, 
later can no longer compensate the existing increase in volume of the light gas, entering 
into ABCD per unit time. 

The effect of the parameter A~-~rl/2Re on the structure of the flow under study is illu- 
strated in Fig. 5. A decrease of the value of this parameter increases the role of diffu- 
sion transport, which creates conditions for rapid mixing of the mixture. Thus, for /Arl/2Re = 
20 (regime N = 3), the mixture in ABCD has a more uniform composition (Fig. 5a), and there 
is more light gas in it than for values /Arl/2Re = 100 or 300 (curves I-3 in Fig. 2 and Fig. 
5b, which shows the results of the calculation of variant N = I). 

It is of great interest to compare the results obtained based on the system of equations 
(11)-(14) with the corresponding results obtained by solving the same problem within the 
framework of the Boussinesq approximation. The results of this comparison, presented in Fig. 
6 [the continuous curves show the solution of the system of equations (11)-(14) and the 
dashed curves show the Boussinesq approximation], indicate that as el increases, the error 
introduced into the calculation as a result of the use of the Boussinesq approximation in- 
creases and already at el = I (curve I) reaches 25%. This conclusion is entirely natural, 
since as el increases, the ratio of the densities of light and heavy gases increases, and 
the degree of density inhomogeneities in the flow therefore also increases. 

The calculations showed that the error introduced into the calculation of G(t) with the 
use of the Boussinesq approximation does not exceed 5% only for el ~ 0.1. 
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NUMERICAL INVESTIGATION OF A GAS JET WITH HEAVY PARTICLES ON THE BASIS 

OF A TWO-PARAMETER MODEL OF TURBULENCE 

L. B. Gavin, V. A. Naumov, 
and V. V. Shor 

UDC 532.529 

Theoretical [I-4] and experimental [5, 6] investigations recently executed show that 
disperse particles exert substantial influence on the gasdynamic parameters and turbulent 
structure of two-phase jets. Two fundamental problems occur in the theoretical investigation 
of flows of this kind: formulation of the initial system of equations and representation of 
the unknow.: correlation moments. The solution of the former is obtained in [7] by spatial 
averaging of the micro-equations describing the processes within the component phases; up to 
now the ]~tter has been solved within the framework of the mixing-path theory [I-3]. The 
equation of turbulent viscosity transport for a "pure" gas has hence been applied in [2] in 
place of the Prandtl formula. 

Utilized extensively at this time to investigate turbulent flows are two-parameter models 
containing the energy transport equations of turbulent pulsations and its dissipation velocity 
[8, 9]. Such models permit not only the computation of the average parameters and character- 
istics of the turbulence with the stream prehistory taken into account, but also taking ac- 
count of the influence of the external effects to be given a bette2 foundation. The trans- 
port equation of the fluctuating energy was utilized first in [4] to analyze a jet with a low 
drop concentration under the assumption of no average phase slip. The influence of the drops 
on the fluctuation energy is here taken into account approximately by the introduction of em- 
pirical corrections to the traditional terms describing the turbulent energy generation and 
dissipation; the scale of turbulence is considered proportional to the jet width. 

An e -- ~ model is proposed in this paper for the numerical investigation of a turbulent 
gas jet with solid particles under conditions of a substantial nonequilibrium in the veloci- 
ties of the component phases; expressions are obtained for the unknown correlation moments 
due to the presence of a disperse phase. 

I. FORMULATION OF THE PROBLEM 

The system of equations for the average quantities describing the outflow of a two-phase 
turbulent jet has the form 

0% i 0 
O~ + 7 ~  (y~g)=0; (I .I) 

0 1 O , , 
0-7 (p#Up) -6 -7- -~7 (fl (ppvp -6 <ppv#>)) = 0; ( 1 .2 )  

( 4 , a , ,  

~g Ug--~ + vg oy/+ 7 " ~ y  (yp~ <ugv~>) = --F~; (1.3) 

0% , , 0% 1 0 (gpp<u'pv'p>)---- Fx; 
P + u p  ~-Tx -6 (Ppvv -6 <Ppve>)-~u -6 ~--~y (I .4) 

,+e +e i + f z, 
~ + v g ~ = - T W  t , y ~ W  / + ~ ,~ay/  - ~ ;  ( t . 5 )  

+8 ae ~ o ( ~t o+~ k ~ /oug~2 +~ 
' ~ ' ~ + " o , j  y a~ \ Y ~ ] +  "V-"'t,~)--k~e -% '  (1.6) 
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